The System for 2050

The System for 2050 94
Available Revenues 94
Revenue Forecasting Methodologies 98
2050 Revenue Forecasts 100
Projected Future Maintenance Expenses 103
Projected Future Transportation Expenses 104
Long-Range Transportation Financial Summary 104
Major Projects 117
I-74 Mississippi River Corridor 117
I-8o Mississippi River Bridge and Corridor Reconstruction119
Total Transportation Investment 120
Unmet Needs and Further Study Needs 121
Unmet Needs 121

Fiscal Constraint
A financial analysis of all categories of system costs, reasonably expected to be available revenues, forecasting methods, and support assumptions using rigorous and clear technical methods.

Source: Fiscal Constraint in LongRange Transportation PlanningBest Practices Case Studies, January 2012; U.S. Department of Transportation

The System for 2050

An underlying consideration in the development and implementation of any future transportation network is the availability of funds. Funding for transportation projects is available through several federal, state, and local funding mechanisms. As with most programs, forecasting the future resources that will be available to meet the long range transportation needs is a difficult task.

A component of federal transportation legislation requires the long range transportation plan be financially constrained. A financially constrained plan provides sufficient financial information to demonstrate that projects in the plan can be implemented using committed, available, or reasonably available revenue sources, with a reasonable assurance that the federally supported transportation system is being adequately operated and maintained. However, the process of determining whether a long range plan is financially balanced is a challenge with many uncertainties. For example, significant dollars are budgeted in a federal transportation act for federally eligible projects. The FAST Act has been extended through 2021. By the end of the year, a new bill or an extension will be needed. Federal transportation reauthorizations have based income on projections for the Highway Trust Fund, and some general revenue. The nation faces diminishing revenues going into the trust fund, and future allocations in a series of 2-year, 4-year, or 6-year transportation bills is unknown.

For the purposes of this plan, some general financial forecasting procedures were utilized based on historical experience and conservative estimates. In creating these forecasts, key assumptions have been made about the future transportation funding sources. The most significant assumption relates to the availability of future federal funding. It is assumed throughout this plan that the federal government will continue to fund its existing transportation programs into the future. This assumption is supported by the December 2020 extension of the federal transportation act, known as Fixing America's Surface Transportation (FAST) Act.

Available Revenues

Before any future revenue forecasts can be made, there must be an understanding of a "reasonably available" transportation revenue.
"Reasonably available," as defined by federal regulations, includes all those transportation resources for which documentation can be produced to justify that there is a reasonable expectation that the funds from that resource will be available in the future.

The following list outlines some of the financial sources utilized for transportation projects and was the historical basis for future revenue estimates. The Fixing America's Surface Transportation (FAST) Act was authorized in December 2015 and extended in late 2020 through 2021. There were new programs as part of FAST. The list below is consistent with historical programs the Quad Cities MPA has received, but is not all inclusive of the opportunities that may be present in the future. Funds related to COVID relief are one example, which are above and beyond typically available funds. As another example, there are Federal Transit programs for light rail and bus rapid transit that are not listed. This plan suggests these types of projects would require further study to be viable and fiscally constrained projects in the plan. However, these sources do exist and may be opportunities for planning towards these types of facilities in the future.

FAST Act Federal Highway Transportation Assistance Programs

- Congestion Mitigation and Air Quality Improvement Program
- Emergency Relief Program
- Federal Lands Access Program
- Ferry Boat Formula Program
- Highway Safety Improvement Program
- Metropolitan Planning Program
- National Highway Performance Program
- State Planning and Research Program
- Surface Transportation Block Grant
- Transportation Alternatives Program
- Other Federal Discretionary Dollars

FAST Act Federal Transit Transportation Assistance Programs

- Bus and Bus Facilities Program, FTA 5339
- Capital Investment Grants
- Enhanced Mobility of Seniors and Individuals with Disabilities, FTA 5310
- Fixed Guideway Capital Investments Grants
- Public Transportation Emergency Relief Program
- Rural Area Formula Grants
- State of Good Repair Grants
- Transit-Oriented Development Planning Pilot
- Urbanized Area Formula Grants FTA 5307
- Metropolitan Planning Grants
- State Planning Grants
- Other Federal Discretionary Dollars

Various State, Local, and Other Funding Resources and Programs

- General Funds
- SpecialTaxes
- Bonds
- Fares or User Fees
- Other State/Local Resources

Some of these resources are discretionary and/or competitive programs. Further, some projects, because of their scope, may require direct appropriations from federal or state programs. Table 3.1 shows a comprehensive funding by source list from the Quad Cities Metropolitan Planning Organization's (MPO) Transportation Improvement Program from 2011-2021. Over $\$ 1$ billion in funding has been programmed toward transportation projects using federal, state, and local resources during this period of time.

Table 7.I - Transportation Improvement Program Summary of Programmed Funds FY20II-202I

ArealSource	Federal Share	State Share	Local Share
County Highway Bridge Program	\$463,396	\$384,604	
Demonstration/Earmark (DEMO)	\$1,051,171	\$217,000	\$30,121
FHWA - Competitive Extreme Weather Grant	\$37,500		\$37,500
High Priority Program - SAFETEA-LU (HPP-STLU)	\$1,600,000	\$0	\$0
Highway Safety Improvement Program (HSIP)	\$25,104,045	\$2,337,000	\$464,444
lowa Clean Air Attainment Program (ICAAP)	\$1,199,000	\$0	\$299,750
Illinois Transportation Enhancement Program (ITEP)	\$12,340,676	\$0	\$3,248,733
Local/State	\$0	\$50,942,000	\$19,035,000
National Corridor Infrastructure Improvement (NCII)	\$2,662,000	\$407,000	\$0
National Highway Performance Program (NHPP)	\$631,233,000	\$78,22 I,000	\$830,000
National Highway Performance Program (NHPP) / Surface Transportation Block Grant (STBG)	\$52,193,000	\$5,799,000	
Planning	\$4,105,815	\$98,417	\$928,036
Revitalize lowa's Sound Economy Program (RISE)	\$0	\$832,000	\$1,248,000
Railroad (RR) Safety	\$8,971,000	\$0	
Railroad (RR) Hazard	\$150,000		
Railroad (RR) Protect	\$150,000		
Statewide Planning \& Research (SPR)	\$360,000	\$8,333	\$81,667
Safe Routes To School (SRTS)	\$400,000		\$150,000
Surface Transportation Block Grant (STBG)	\$15,602,155	\$0	\$4,924,742
STBG - Highway Bridge Program (STBG-HBP)	\$218,396,000	\$24,458,000	\$2,891,525
STBG-Rural (STBG-R)	\$400,000		\$100,000
Surface Transportation Program (STP)	\$27,069,316	\$209,000	\$10,284,779
Surface Transportation Program for Transportation Management Areas over 200,000 population (STP > 200k)	\$8,104,000	\$1,756,000	
Surface Transportation Program - Rural (STP-R)	\$21,255,797	\$22,000	\$5,46I,279
Surface Transportation Program (STP) - Statewide Flex	\$132,000	\$33,000	
SWAP - Highway Bridge Program (SWAP-HBP)	\$2,600,000	\$0	\$695,000
SWAP - Surface Transportation Block Grant (SWAP-STBG)	\$4,120,000	\$0	\$1,030,000
Transportation Alternatives Program - Regional (TAP-REG)	\$3,648,646	\$340,300	\$4,465,685
Federal Transportation Alternatives Set-Aside Program (TASA)	\$2,502,375	\$0	\$945,738
Transportation Infrastructure (TI)	\$1,843,000	\$0	\$461,000
Grand Total	\$1,047,693,892	\$166,064,654	\$57,612,999

Source: Bi-State Regional Commission, 2021

Revenue Forecasting Methodologies

Forecasting future transportation funds can be achieved by a variety of different methodologies. For the purposes of this planning effort, trend line projections were applied to reasonably available transportation revenues for the Quad Cities MPA, based on the FY2011FY2021 funding recorded in the respective adopted Transportation Improvement Programs (TIP). Figure 3.2 illustrates annual average transportation funding over this 10-year period by transportation revenue resources, including roadway operations and maintenance, roadway capacity expansion, transit operations and maintenance, transit capital, and transportation enhancements. These justification categories are determined for each project as they are entered into the TIP to track how funding is historically allocated in the region. By aggregating the projects by categories, revenue projections are less affected by the inconsistency of some funding programs for the purposes of revenue projection. Unlike Table 3.1, Figure 3.2 does not include state-led projects that are considered revenue neutral in this plan for the purposes of fiscal constraint. The trend line projections provided an annual average for the FY 2020 funding forecasting base year. An annual growth rate of 1.5\% annually was applied for the first 10 years (2021-2030) of the plan. An annual growth rate of 3% annually was applied for the outer years (2031-2050) of the plan. The growth rate for the outer years is consistent with historical trends, using locally programmed Surface Transportation Block Grant (STBG) funds.

In keeping with the revenue projections, the period of programmed STBG funds from 2011-2021 was examined for historical trends. During this period, the average annual growth in Iowa Quad Cities STBG funds was 1.07\%, and 2.97\% in Illinois Quad Cities STBG funds. Figure 3.1 demonstrates these trends. In addition to STBG trends, rates from peer MPOs were reviewed, as well as historical Gross Domestic Product (GDP) rates over the past 5 years as indicators of reasonableness.

In recognition of the current economic climate, a growth rate of 1.5\% for 2021-2030 was used to reflect a conservative approach to revenue in the short term and 3\% in the long term of 2031-2050 to reflect historical trends and economic recovery. Considering the current and future states of the economy, the Transportation Policy Committee

and both the Illinois and lowa Departments of Transportation agreed with the revenue forecasting methodologies and projections. A similar methodology was used in the development of the prior plan.

Figure 3.I - Quad Cities Surface Transportation Block Grant (STBG) Funds 20II-202I

Source: Bi-State Regional Commission, 2021

Figure 3.2 - FY20II-202I Programmed Local Projects (Average/Year)

Source: Bi-State Regional Commission, 2021

2050 Revenue Forecasts

Using a trend line projection method, the financial resources for the Quad Cities MPA were estimated. Table 3.2 summarizes the 2050 revenue forecasts. A total of $\$ 2.1$ billion was estimated for roadway revenues and $\$ 1.5$ billion for transit revenues. These forecasts include federal, state, and local funds for both lowa and Illinois. These forecasts exclude state-lead projects. State projects are considered neutral with regard to fiscal constraint. This provision allows for a realistic analysis of local transportation funding in the region.

Based on the last 10 fiscal years of information in the Transportation Improvement Program, it is projected that federal transportation resources will account for 64% of the total roadway dollars along with 1% in state resources and 35% in local resources. In regard to transit projects, 24% of financial resources will be federal, 41% will be state, and 34% will be local.

Figure 3.3 - Methodology for Establishing Base Year Values for Revenue Projections for Local Road System

Source: Bi-State Regional Commission, 2021

The System for 2050

Table 3.2 - 2050 Quad Cities Long Range Transportation Plan Financial Summary for the Local Road System

Transportation Revenue Resources		Federal, State, and Local (\$1,000)		
		202.-2030	$2031-2050$	2021-2050
Roadway	Operations \& Maintenance	\$425,780	\$1,270,456	\$1,696,236
	Expansion	\$95,766	\$281,321	\$377,087
Subtotal Roadway		\$521,546	\$1,551,777	\$2,073,323
Transit	Operations \& Maintenance	\$326,907	\$789,710	\$1,116,617
	Capital	\$110,882	\$327,726	\$438,608
Subtotal Transit		\$437,789	\$1, I 17,436	\$1,555,225
Enhancements	Enhancements	\$50,92 I	\$151,939	\$202,860
Subtotal Enhancements		\$50,92I	\$151,939	\$202,860
Total Forecasted Transportation Revenue Resources		\$1,010,256	\$2,82 I, 152	\$3,83 I,408
Transportation Expenses		Federal, State, and Local (\$ 1,000)		
		202.-2030	$2031-2050$	2021-2050
Roadway	Operations \& Maintenance	\$425,780	\$1,270,456	\$1,696,236
	Expansion	\$102,174	\$273,683	\$375,857
Subtotal Roadway		\$527,954	\$1,544,139	\$2,072,093
Transit	Operations \& Maintenance	\$326,907	\$789,710	\$1,116,617
	Capital	\$110,882	\$327,726	\$438,608
Subtotal Transit		\$437,789	\$1, I 17,436	\$1,555,225
Enhancements	Enhancements	\$22,431	\$44,864	\$67,295
Subtotal Enhancements		\$22,431	\$44,864	\$67,295
Total Forecasted Transportation Expenses		\$988, 74	\$2,706,439	\$3,694,613
Financial Differences		Federal, State, and Local (\$1,000)		
		202I-2030	203 I-2050	202 -2050
Roadways		-\$6,408	\$7,638	\$1,230
Transit		\$0	\$0	\$0
Enhancements		\$28,490	\$107,075	\$135,565

[^0]
Projected Future Maintenance Expenses

One of the highest priorities in any urban area is maintaining the existing multi-modal transportation network. Maintaining the surface transportation network includes repairing/replacing existing roadways, repairing/replacing existing trails, operating the existing level of transit service, and replacing the existing transit vehicles as they reach their life-cost cycle.

Based on historic trends determined through review of Transportation Improvement Programs, the percentage of funding spent on maintenance activities for roadways and transit activities was determined. Concerning roadways, approximately 42% of programmed dollars were spent on maintenance activities over the past 10 fiscal years for projects listed in the Transportation Improvement Program. This 10-year period saw a few expansion projects (e.g. new construction on Veteran's Memorial Parkway between Davenport and Bettendorf). In keeping with the trend toward system preservation, it was determined that 42% of the future programmed funds should be allocated to maintenance. (Note:This percentage was a compilation of ALL entities listed in the Transportation Improvement Program.)

Individual entities may spend a higher or lower percentage on their maintenance. Examples of major maintenance projects that are projected to be completed within the timeframe of the plan include the three Mississippi River interstate (74, 80, and 280) bridge painting projects, several bridge replacements area wide, interstate patching and resurfacing in the lowa and Illinois Quad Cities, and bridge deck rehabilitation on I-280.

In regard to transit services, the majority of programmed dollars (66\%) go toward maintenance of the system, which includes bus replacements, facility maintenance, and ongoing operations of the systems. Maintenance costs for the trail network have not been established. Many communities fund maintenance of existing trails through park maintenance programs, public works, or general funds. Currently, trail maintenance is an ineligible use of federal transportation alternatives funding and are not required to be estimated in this document. Table 3.2 summarizes the 2021-2050 transportation maintenance expenses.

Projected Future Transportation Expenses

In addition to maintaining the existing network, the 2050 Quad Cities Long Range Transportation Plan addresses what the local and state jurisdictions consider as their necessary expansion projects for the next 30 years. Table 3.3 shows the planned local projects s for all of the roadway network and their total associated costs. This includes expansion projects currently programmed in the TIP. Project costs are inflated to reflect Year of Expenditure (YOE). The middle years of each time band, 2025 for the short term and 2040 for the long term, are targeted for the inflation calculations. Each jurisdiction utilized rates of inflation ranging between 1.5% and 3% and used a linear rate for YOE calculations. Table 3.4 shows roadway network priority projects under state jurisdiction that are not included in the fiscal constraint calculation as they are considered fiscally neutral in this plan. A full listing of the most recent TIP projects can be found in Appendix B. This listing includes both local and state-led projects.

Table 3.5 calculates the estimated costs associated with proposed trail facilities listed in Table 6.1 in Chapter 6. Proposed transit and intermodal network projects are outlined in their respective chapters of this document.

It should be noted that the listed roadway projects are divided into short-range (2021-2030) and long-range (2031-2050) timeframes. The two categories serve to illustrate projects that are foreseen as being completed in the short-term, versus those projects that are expected to be completed in the long-term. Combined, all the local roadway expansion projects total approximately $\$ 375$ million. All the non-motorized trails/facilities total approximately $\$ 97$ million.

Long-Range Transportation Financial Summary

Table 3.2 illustrates the planning area's transportation finances. They are divided into categories of financial resources and expenses. The category of "Transportation Revenue Resources" is further divided into the subcategories of roadways, transit, and transportation enhancements. The 2050 Forecasted Revenues were calculated as described earlier in this chapter. Under the category titled "Transportation Expenses" in Table 3.2, there are several subcategories for expenses including roadways, transit, and transportation enhancements to mirror the resources. Table 3.2 illustrates the planning area
"Financial Difference" of these categories as whether or not the projected resources offset the planned expenses of the transportation network and, thus, produce a financially balanced plan.

From Table 3.2, a difference of $+\$ 1$ million remains in roadway projects and $+\$ 135$ million in enhancement type projects, after subtracting Transportation Expenses from Transportation Revenue Resources. Note that because transit maintenance and expansion expenditures were based on efforts listed in the TIP, local input, and state reported allotments, revenues and expenditures zero out. Thus, the resulting difference reflects the difference in remaining roadway dollars.

Projects may shift to short-range or long-range depending on the actual availability of federal, state, and local funds, as projects move toward implementation and transportation improvement programming. It is not deemed unreasonable that funding could be identified, respectively, in both the short and long-range timeframes. On consultation with local officials and review of their non-federal transportation projects, local funding could be secured through general revenues, bonds, non-DOT grants, and other sources to meet this shortfall. This is demonstrated by successfully completed projects over the past 10 years on the federally-eligible system entirely funded by local government. Input was gathered on projects such as these from local jurisdictions. Motor Fuel Tax (MFT) reports from Illinois and operations and maintenance receipt reports from lowa were compiled to capture other local revenues. These funds were incorporated into the final revenue projections.

Table 3.3 includes the fiscally-constrained local roadway network for 2021-2030 and 2031-2050. These projects are considered those that will add capacity to the roadway network. Capacity projects are those that add lanes or increase the right-of-way, or they may change the traffic direction or reduce the number of lanes. As part of the fiscal constraint analysis, projects under a state's jurisdiction were treated as fiscally-neutral to the local MPO constraint. Through 2050, the local capacity-building projects for the local roadway system amount to a $\$ 375$ million investment. Table 3.4 lists projects anticipated within the MPA boundary that would be under the jurisdiction of the lowa or Illinois Departments of Transportation and planned for the short and long-term periods identified. Through 2050, the state roadway capacity building projects amount to a $\$ 450$ million

investment in the Quad Cities road network. Map 3.1 illustrates the proposed future locally-constrained and state projects planned in the Quad Cities MPA.

Of the total in roadway costs, the I-74 Mississippi River Corridor Reconstruction and I-8o Bridge Replacement projects are not included in Tables 3.2 or 3.4. These will be discussed in their own section of this chapter, noted as major projects.

Table 3.3-Local Roadway Network - 202I-2030 and 203I-2050
(Capacity Enhancing or Expansion Projects on Federally Eligible Road System)

Project Location	Project Description	Project Cost	2050 LRTP Priorities		FFC Classification
			2021-2030	203 I-2050	
City of Bettendorf, lowa					
Middle Rd. (South of Crow Creek Rd. - $53{ }^{\text {rd }}$ Ave including Roundabout Expansion)	Reconstruction; 4 Lanes	\$7,384,000		X	Collector
Middle Rd. (North of $53{ }^{\text {rd }}$ Ave to South of Forest Grove Dr.)	Reconstruction; 4 Lanes	\$ 1 1,088,000		X	Collector
Forest Grove Dr. (Middle Rd. to Criswell St.)	Reconstruction; 3/4 Lanes	\$10,738,000	X		Collector
Criswell Street (Forest Grove Dr. - Valley Drive)	Reconstruction; 3/4 Lanes	\$14,560,000	X		Arterial
Criswell Street (Valley Drive U.S. 67)	New Construction; 3/4 Lanes	\$3,360,000		X	Arterial
Roundabout at Intersection of Middle Rd. and Indiana Ave.)	New Construction; 2 Lanes	\$7,525,000		X	Arterial
Indiana Avenue (Middle Rd. Wells Ferry Rd.)	Reconstruction; 3/4 Lanes	\$18,375,000		X	Arterial
City of Davenport, lowa					
46 ${ }^{\text {th }}$ Street (East of Tremont Avenue to Eastern Avenue)	New Construction; 4 Lanes	\$5,219,200		X	Collector
Division Street (NW Blvd - Research Parkway)	Widen; 4 Lanes	\$6,153,600		X	Arterial
Eastern Avenue (46 ${ }^{\text {th }}$ Street $53^{\text {rd }}$ Street)	Widen; 4 Lanes	\$1,954,400	X		Arterial
Eastern Avenue (53 ${ }^{\text {rd }}$ Street - 67 ${ }^{\text {th }}$ Street)	Widen; 4 Lanes	\$4,064,000		X	Arterial
Hickory Grove Rd. (Hillandale Rd - Kimberly Rd.)	Widen; 3 Lanes	\$7,032,000		X	Arterial
Jersey Ridge Road ($53{ }^{\text {rd }}$ Street $67^{\text {th }}$ Street)	Widen; 4 Lanes	\$8,096,000		X	Collector
$6{ }^{\text {st }}$ Street (Appomattox Road Sturdevant Street)	New Construction; 3 Lanes	\$3,153,600		X	Arterial

The System for 2050

Table 3.3 (Continued)

Project Location	Project Description	Project Cost	2050 LRTP Priorities		FFC Classification
			2021-2030	2031-2050	
Fairmount Street (Locust Street - Kimberly Road)	Widen; 4 Lanes	\$1,920,000		X	Arterial
Northwest Blvd. (Pine Street-Ripley Street)	Widen; 4 Lanes	\$7,520,000		X	Arterial
Marquette Street (6Ist Street $76^{\text {th }}$ Street)	New Construction; 2 Lanes	\$2,128,000	X		Local*
Utica Ridge Road (56 ${ }^{\text {th }}$ Street Forest Grove Road)	Widen; 4 Lanes	\$1,440,000		X	Arterial
$3^{\text {rd }}$ and $4^{\text {th }}$ (Marquette Street River Drive)	Two-way conversion	\$1,904,000	X		Arterial
Veteran's Memorial and Eastern Roundabout	Construction	\$1,120,000	X		Arterial
City of Eldridge, lowa					
Blackhawk Trail (South First St.-Buttermilk Rd.)	New construction; 2	\$8,970,000	X		Arterial
Blackhawk Trail (Buttermilk Rd. - Hillandale Rd.) \& Hillandale Rd. (Blackhawk Trail Rd. - Slopertown Rd.)	New construction; 2 \& Recon-struction-Gravel to Concrete	\$14,950,000		X	Arterials
Blackhawk Trail Rd. (S. I ${ }^{\text {st }}$ St. to Scott Park Rd.)	Reconstruction with Trail	\$8,625,000	X		Arterial/ Collector
S. Buttermilk Rd. (Blackhawk Trail Rd. - Slopertown Rd.)	Reconstruction with Trail	\$5,070,000		X	Arterial/ Loca**
S. I ${ }^{\text {st }}$ St. (250" north of W. Sheridan St. to Lincoln Rd.)	Reconstruction with Trail	\$6,785,000	X		Arterial
S. I ${ }^{\text {st }}$ St. (N. City Limits -Davenport Street)	Reconstruction	\$6,370,000		X	Arterial/ Collector
E. LeClaire Rd. (275" E of 16th Avenue - Scott Park Rd.)	Reconstruction	\$4,680,000		X	Arterial
E. LeClaire Rd. (9 ${ }^{\text {th }}$ Ave. - 275" E of $16^{\text {th }}$ Avenue)	Reconstruction	\$5,635,000	X		Arterial
W. LeClaire Road (N.9 ${ }^{\text {th }} \mathrm{St}-\mathrm{N}$. $\left.2^{\text {nd }} S t .\right)$	Reconstruction with Trail	\$4,255,000	X		Arterial

Table 3.3 (Continued)

Project Location	Project Description	Project Cost	$\begin{aligned} & 2050 \text { LRT } \\ & 2021-2030 \end{aligned}$	Priorities $2031-2050$	FFC Classification
Lincoln Rd. (S. Buttermilk Rd. S. I ${ }^{\text {st }}$ Street)	Reconstruction	\$9,880,000		X	Loca**
City of LeClaire, lowa					
Holland Street (Cody Street W. City Limits)	Pave Existing Roadway	\$1,241,600		X	Local*
Cody Road Phase II Street Improvements (Ewing St. to Chestnut St.)	Reconstruction/ Streetscaping	\$5,376,000	X		Other Principal Arterial
Wisconsin Street (Cody Rd. 15 $5^{\text {th }}$ St.)	Reconstruction with Trail	\$4,480,000	X		Collector
$35^{\text {th }}$ and Wisconsin Roundabout	Reconstruction/ Roundabout	\$5,088,000	X		Collector
Scott County					
Bridge Replacement on Z30 (Wells Ferry Rd) over Spencer Creek (Sec.8-T78N-R5E)	Bridge Replacement	\$870,000	X		Collector
Bridge Replacement on Z30 (Wells Ferry Rd) over Spencer Creek (Sec.6-T78N-R5E)	Bridge Replacement	\$870,000	X		Collector
205 ${ }^{\text {th }}$ Street (Wells Ferry Road to Hwy. 67	Paving	\$6,440,000		X	Loca**
City of Fast Moline, Illinois					
Barstow Rd. at $172^{\text {nd }}$ Street	Intersection \& Turn Lanes	\$1,552,000		X	Arterial
Barstow Rd. at IL Route 5	Intersection \& Turn Lanes	\$5,718,400		X	Arterial
City of East Moline \& Rock Island County, Illinois					
Hubbard Rd (Denhardt Rd. Emerald Pt. Subdivision)	Resurfacing \& Reconstruction	\$4,355,200		X	Collector
City of Moline, Illinois					
$52^{\text {nd }}$ Ave ($3^{\text {rd }}-27^{\text {th }}$ Street)	Reconstruction; 3 Lanes	\$6,692,000		X	Collector

The System for 2050

Table 3.3 (Continued)

Project Location	Project Description	Project Cost	$\begin{aligned} & 2050 \text { LRT } \\ & 2021-2030 \end{aligned}$	Priorities 2031-2050	FFC Classification
$\begin{aligned} & 47^{\text {th }} \text { Avenue }\left(53^{\text {rd }} \text { Street }-70^{\text {th }}\right. \\ & \text { Street }) \end{aligned}$	New Construction; 2 Lanes	\$3,492,500		X	Local*
Rock River Boulevard (I-74 70 ${ }^{\text {th }}$ Street)	New Construction; 2 Lanes	\$14,605,000		X	Local*
$53^{\text {rd }}$ Street ($47^{\text {th }}$ Ave. - $52^{\text {nd }}$ Ave.)	New Construction; 2 Lanes	\$2,035,810		X	Collector
$70^{\text {th }}$ Street (John Deere Road $52^{\text {nd }}$ Ave.)	New Construction; 3 Lanes	\$3,556,000		X	Loca**
$72^{\text {nd }}$ Street $\left(78^{\text {th }}\right.$ Avenue $-100^{\text {th }}$ Avenue)	Reconstruction; 2 Lanes	\$2,955,290		X	Minor Rural Collector*
$\begin{aligned} & 100^{\text {th }} \text { Avenue }\left(55^{\text {th }} \text { Street }-72^{\text {nd }}\right. \\ & \text { Street) } \end{aligned}$	Reconstruction; 3 Lanes	\$4,244,340		X	Loca**
Ave. of the Cities ($16^{\text {th }}$ St. to East Moline)	Reconstruction, eliminate lanes, pedestrian improvements	\$11,200,000	X		Minor Rural Collector*
City of Rock Island, Illinois					
$3{ }^{\text {st }}$ Street W. (Andalusia Road - $85^{\text {th }}$ Avenue W.)	Pave Existing Roadway	\$3,040,000		X	Collector
$18^{\text {th }}$ Avenue ($17^{\text {th }}$ St. - Moline City Limits)	Widen 4 Lanes	\$7,616,000	X		Arterial
14 ${ }^{\text {th }}$ Street W. (Ridgewood Road - $92^{\text {nd }}$ Avenue W.)	Pave Existing Roadway	\$7,040,000		X	Collector
$14^{\text {th }}$ Street W. (92nd Avenue W. - $102^{\text {nd }}$ Avenue W.)	Pave Existing Roadway	\$3,360,000		X	Collector
$\begin{aligned} & 35^{\text {th }} \text { Street } \mathrm{W} .\left(92^{\text {nd }}\right. \text { Avenue W. } \\ & -106^{\text {th }} \text { Avenue W.) } \end{aligned}$	Pave Existing Roadway	\$5,600,000		X	Collector
$35^{\text {th }}$ Street W. (85 ${ }^{\text {th }}$ Avenue W. - $92{ }^{\text {nd }}$ Avenue W.)	Pave Existing Roadway	\$7,360,000		X	Collector
$85^{\text {th }}$ Avenue W. (31 ${ }^{\text {st }}$ Street W. - $92^{\text {nd }}$ Avenue W.)	Pave Existing Roadway	\$3,680,000		X	Collector

Table 3.3 (Continued)

Project Location	Project Description	Project Cost	$\begin{aligned} & 2050 \text { LRT } \\ & \text { 202l-2030 } \end{aligned}$	Priorities $2031-2050$	FFC Classification
$7^{\text {th }}$ Avenue ($38{ }^{\text {th }}$ St. to $45^{\text {th }}$ St.)	Eliminate lanes and convert to 2-way traffic	\$360,000		X	Arterial
$14^{\text {th }}$ Avenue ($30^{\text {th }}$ Street-45 ${ }^{\text {th }}$ St.)	 Widen; 3 Lanes	\$8,160,000		X	Collector
$30^{\text {th }}$ Street ($5^{\text {th }}$ Ave-18 ${ }^{\text {th }}$ Ave.)	Resurface \& Widen; 3 Lanes	\$4,992,000		X	Arterial
$1 I^{\text {th }}$ Street ($31{ }^{\text {st }}-45^{\text {th }}$ Ave.)	Reconstruct \& reduce to 3-lanes	\$14,400,000		X	Arterial
Rock Island County					
78 ${ }^{\text {th }}$ Avenue/County Hwy. 16 (Rock Island-Milan Parkway USI50)	Widen; 3 Lanes	\$2 I,387,200		X	Collector
County Hwy 4 (Barstow Road) FAU 5758 \& FAS 2204	Raise Rd 2.5 ft over 2.5 miles	\$4,136,000		X	Collector
Iowa Quad Cities Total		\$224,320,399	\$83,358,400	\$140,961,999	
Illinois Quad Cities Total		\$151,537,74 I	\$18,816,000	\$132,72I,74।	
Grand Total for Local Roadway Network		\$375,858,140	\$102,174,400	\$273,683,740	

Source: Bi-State Regional Commission, 2021

Footnote: Local * - Federally classified rural minor collectors and local roads will require a change in classification prior to being eligible for federal transportation funding, based on the current transportation regulations. There is a formal process to reclassify roads that will require both MPO and Department ofTransportation approvals.

The System for 2050

Table 3.4 - State Roadway Network - 202I-2030 and 203I-2050
(Capacity Enhancing or Expansion Projects on the Federally Eligible Road System)

Project Location	Project Description	Project Cost	Transportation Improvement Program FFY2I-24	$\begin{aligned} & \text { 2050 LRT } \\ & \text { 202I-2030 } \end{aligned}$	Priorities 203I-2050	FFC Clasiffcation (Needs Review)
State of Illinois						
IL 84: Rock River at Rock Island Co Line to 0.2 mi N of US 6 \& Cleveland Rd: IL 84 to 0.2 mi E, Colona	Reconstruction	\$4,000,000	FFY22	X		Arterial
Andalusia Road (IL 92 to US 67, Milan)	Reconstruction; 4 Lanes	\$64,000,000			X	Arterial
I-74 (Rock Riv-er-Avenue of the Cities)	Widen; 6 Lanes	\$141,040,000	FFYI4 PE-I		X	Interstate
US 6/69 ${ }^{\text {th }}$ Avenue (US 150 - E of Coal Valley/Niabi Zoo Road)	Reconstruction; 3 Lanes	\$25,600,000			X	Arterial
IL 92 Relocation (West Interchange at II ${ }^{\text {th }}$ Street), Rock Island	Construct New Interchange	-	City-Initiated		X	Arterial
*IL 92 ($16^{\text {th }}-24^{\text {th }}$ Streets), Rock Island (Zone I)	Reconstruction, Lane Reduction	-	City-Initiated	X		Arterial
*IL 92 Relocation ($24^{\text {th }}-44^{\text {th }}$ Streets), Rock Island (Zones I\&2)	Reconstruction; Lane Reductions/ Directional Realignments	-	City-Initiated		X	Arterial

Table 3.4 (Continued)

Project Location	Project Description	Project Cost	Transportation Improvement Program FFY2I-24	2050 LRTP Priorities		FFC Clasification (Needs Review)
				202\|-2030	2031-2050	
*IL 92 Relocation (East Reconfiguration), Rock Island/ Moline (Zone 2)	$4^{\text {th/ }} / 6$ th $\&$ $5^{\text {th }} / 7$ th Aves 2-Way Conversion; Reconstruc- tion; Con- nectors	-	City-Initiated		X	Arterial
*IL 92 (48 ${ }^{\text {th }}$ Street - IL5/IL84 South), Moline/East Moline/Silvis (Zones 4-6)	Reconstruction; Lane Reduction	-	City-Initiated		X	Arterial
IL 92 \& I-280 Interchange Improvements, Rock Island	Reconfigure I-280 Interchange and install Access Road	-	City-Initiated		X	Arterial
US 67/I ${ }^{\text {st }}$ Street (E $4^{\text {th }}$ Ave., Milan - South to Milan Village Limits)	Reconstruction Intersections	-	Village-Initiated		X	
	Illinois Total	\$89,600,000		\$4,000,000	\$320,240,000	
State of lowa/City of Davenport - Inquiry to City						
Kimberly Road (Brady Street-Elmore Avenue)	Widen; 6 Lanes	\$57,910,400			X	Arterial
State of lowa/City of Bettendorf						
I-80 and Middle Road	Interchange Upgrade	\$36,000,000		X		Interstate

The System for 2050

Table 3.4 (Continued)

Project Location	Project Description	Project Cost	Transportation Improvement Program FFY2.-24	2050 LRT	$\begin{aligned} & \text { Priorities } \\ & 203 \text { I-2050 } \end{aligned}$	FFC Clasification (Needs Review)
State of lowa (lowa Department of Transportation - IADOT)						
I-74 North Section	Reconstruction	\$165,000,000			X	Interstate
IAI30/Northwest Boulevard Interchange, Davenpor	Interchange Improvements	-		X		Interstate
IA46I/Business 61 Duck Creek, 0.4 miles S. of U.S. 6 Davenport	Bridge Replacement	\$3,768,000	FFY23	X		Arterial
	Iowa Total	\$262,678,400		\$39,768,000	\$222,910,400	
Grand Total for lowa and Illinois		\$518,705,600		\$43,768,000	\$474,937,600	

Source: Bi-State Regional Commission, 2021 with technical corrections 2022
*Reference IL92 Corridor Study Alternatives \& Strategies Summary (February 2020) for details, includes non-motorized transportation elements. Zones 3 and portion of Zone 4 configurations not part of adopted plan travel demand model analysis and would require additional study, and modeling beyond technical corrections, and are not listed in the table. The summary also identifies cost estimates by zone and not configured for the projects as outlined due to the timing of the study, and plan adoption timeline. Total cost of completion of Zones 1-6 is estimated at $\$ 30,062,500$.

Table 3.5 - Trails/Paths

Facility Type	Approximate Miles by Facility Type (202I2030)	$\begin{gathered} \text { Estimated } \\ \text { Cost/Mile } \\ (2021-2030)^{*} \end{gathered}$	$\begin{gathered} 2021-2030 \\ \text { Costs } \end{gathered}$	Approximate Miles by Facility Type (2031-2050)	Estimated Cost/Mile (203I-2050)*	$\begin{gathered} 203 \text { I-2050 } \\ \text { Costs } \end{gathered}$
Shared Roadways	29.01	\$8,165	\$236,887	58.03	\$11,360	\$659,165
Bike Lane	53.50	\$102,891	\$5,504,711	107.00	\$143,152	\$15,317,457
Separated Trail	58.13	\$345,000	\$20,054,829	116.26	\$480,000	\$55,804,742
Total	140.64		\$25,796,428	281.29		\$71,781,364
Grand Total 202I-2050		Mileage	Costs			
		421.93	\$97,577,79 I			

Source: Bi-State Regional Commission, 2021
*Estimated Costs based on Bushell, Poole, Zegeer, and Rodriguez. Pedestrian and Bicyclist Infrastructure Improvements. University of North Carolina Highway Safety Research Center, 2013.

The System for 2050

Map 3.I - Local and State Road Network 2030/2050
(Capacity/Expansion Projects in the Quad Cities)

Major Projects

The Federal Highway Administration (FHWA) defines major projects in its 2014 Financial Plans Guidance as those projects receiving federal financial assistance with an estimated total cost of $\$ 500$ million or more or having been identified by the FHWA as being a major project. These projects may include those requiring a substantial amount of state program resources, having a high level of public or congressional attention or having extraordinary implications for the national transportation system. Projects with an estimated total cost exceeding $\$ 100$ million but not designated by FHWA as a major project also must have an Initial Financial Plan and Annual Updates.
Major projects require significant resources. They are coordinated with the statewide long range transportation plans and statewide transportation improvement programs. This coordination will evaluate the impact to the states' transportation capital program during the period of analysis covered by the financial plan. Per FHWA guidance, a major project financial plan should be submitted and approved by FHWA before authorization of federal-aid funding for mainline project construction.

I-74 Mississippi River Corridor

The I-74 Mississippi River Corridor Project lowa-Illinois has been defined as a major project. To date, $\$ 680$ million in federal assistance has been obligated or programmed toward the I-74 Mississippi River Corridor Project lowa-Illinois. Currently, one span of the bridge has been completed with traffic opening on the westbound span November 13 2020. The eastbound span is anticipated to be completed by the end of 2021, and demolition of the old structure in 2022.

The I-74 Mississippi River Corridor Project lowa-Illinois was an identified need in both the lowa and Illinois State long range transportation plans. Both states have committed resources to the project to complete the work.

The lowa Department of Transportation (IADOT) is the lead state agency for the project and has worked in cooperation with the Illinois Department of Transportation (ILDOT). The I-74 Mississippi River Corridor Project was value engineered to maintain costs and reduce traffic disruption. The construction period was reduced from five to three years to reduce costs. It has been engineered to last 75 to 100 years.

-74 Bridge Construction

Source: lowa Department of Transportation November 2020

The System for 2050

Table 3.6 - Current I-74 Cost Estimates

Area	Location/ Description	Year to be spent	lowa YOE Cost (x \$1,000,000)	Illinois YOE Cost $(x \$ 1,000,000)$	Total YOE Cost ($\mathrm{x} \$ 1,000,000$)
Expended (or let prior to July 2015)	Includes engineering, Right of Way, Lincoln Road, 53rd Street, downtown Bettendorf streets, and Moline's River Drive.	2000-2015	\$90	\$51	\$141
Expanded Central Section	Extends from south of Ave of the Cities in Moline to Middle Road in Bettendorf.	2016-2021 (construction to begin in fiscal year 2018)	\$377	\$520	\$897
North Section	Extends from Middle Road in Bettendorf to north of 53rd Street in Davenport.	Beyond 2021 (not yet programmed) Design work to start in 2016.	\$165		\$165
Reserve	For any unforeseen issues that may arise during project development.	Not specifically programmed by the states.	\$116	\$102	\$218
		Total	\$748	\$673	\$1,42 1

Source: Iowa Department of Transportation, September 2020

Notes:

YOE stands for year of expenditure.
Costs for the expanded central section and the north section includes future engineering, Right of Way (ROW), utilities, construction, city costs, contract incentives, and risks.

All dollar amounts are shown in millions of dollars.

Source: Bi-State Regional
Commission

Total Transportation Investment

The discussion of project costs or investment focused on fiscally constrained and neutral projects under the Federal Highway Administration and Federal Transit Administration's purview. Shown in Figure 3.4, the total investment in these systems amounts to $\$ 5$ billion. Of this total, $\$ 3.7$ billion comes from local sources, while $\$ 1.2$ billion comes from state sources. It will take coordination with local, state, and federal partners to achieve the projects in this plan. Additionally, this plan discusses air, rail, and river transportation. Funding for these modes are derived from other federal sources as well as state and private sources. While important coordination of projects will be needed, a costs analysis is not part of the scope of this planning effort.

Figure 3.4 - Total Transportation Investment for State and Local Systems Network 202I-2050

[^1]
Unmet Needs and Further Study Needs

Through the fiscal constraint analysis, it was determined that there are a number of projects that are desired, but there is not the reasonable expectation at this time based on current funding sources for these projects to be constructed. In the Chapter 7, freight improvements to the Locks and Dams have been studied, and the U.S. Army Corps of Engineers has determined costs for improvements, but funding has not been allocated to make improvements to the navigation system. There are unmet needs in transit that limit geographic coverage, hours of service, and vehicle replacements. Federal, state, and local funds barely meet current needs. There is a limited amount of funding available to build trails and sidewalks. These typically are paid for with local funds, and federal grants are secured on occasion.

Unmet Needs

Table 3.7 lists road projects that were vetted in this transportation planning process and determined to be lesser priority overall compared to those in the fiscally-constrained Table 3.3, but if funding were to become available, there is interest in completing these projects. These projects are typically lower in federal functional classification from collectors to currently either local or non-classified roads. These projects would require an amendment to the long range transportation plan if funding became available before the next plan update. Map 3.2 shows the location of these unmet roadway needs.

The System for 2050

Table 3.7 - Unmet Roadway Project Needs
(Capacity Enhancing or Expansion Projects on the Federally Eligible Road System)

Project Location	Project Description	Project Cost	2050 LRTP	Priorities	FFC Classification
			202I-2030	203 I-2050	
City of Bettendorf, lowa					
Indiana Avenue (BarrMiddle Roads)	New Construction; 2 Lanes	\$6,500,000		X	Local*
City of Davenport, lowa					
Rockingham Road (N Fillmore Street-U.S. 6I)	Widen; 3 Lanes	\$15,500,000		X	Arterial
46th Street (Pine-Division)	Construction 3 Lanes	\$3,329,000		X	Local* (Planned Collector)
60th Street (FairmontHillandale)	Construct 3 Lanes	\$5,8I7,000		X	Local* (Planned Collector)
City of Moline, Illinois					
60 ${ }^{\text {th }}$ Street (John Deere Road-52 ${ }^{\text {nd }}$ Avenue)	Pave Existing Rodway	\$1,422,000	X		Collector
City of Rock Island, Illinois					
Rock Island-Milan Parkway (IL92/78 ${ }^{\text {th }}$ Avenue/Andalusia Road-U.S. 67	Reconstruction	\$14,675,000	X		Arterial
Iowa Quad Cities Total		\$31,146,000	\$0	\$31,146,000	
Illinois Quad Cities Total		\$16,097,000	\$16,097,000	\$0	
Grand Total for Local Roadway Network		\$47,243,000	\$16,907,000	\$3I,146,000	

Source: Bi-State Regional Commission, 2021 with technical corrections 2022.
Footnote: Local * - Federally-classified rural minor collectors and local roads will require a change in classification prior to being eligible for federal transportation funding, based on the current transportation regulations. There is a formal process to reclassify roads that will require both MPO and DOT approvals.

Further Needs Study

Transportation projects of a scope that will require prior planning before being listed as a fiscally constrained project are shown in Table 3.8 as illustrative projects or projects requiring additional study. These projects are considered conceptual, requiring detailed analyses including costs in year of expenditure dollars. Therefore, these projects are not fiscally constrained as part of this document. They may also require a location or feasibility analysis and later detailed engineering plans. A location map of these projects requiring additional study is shown as Map 3.3.

It is important to understand a typical project development process for a transportation project to further define projects requiring additional study. By understanding what it takes to go from concept to construction, the following discussion is provided. A major construction project involving a new highway can take 5 to 20 years. For example, it took nearly 30 years for the West Rock River Bridge (Veteran's Memorial Bridge at Carr's Crossing) in the Illinois Quad Cities to reach completion. The I-74 bridge and corridor was approximately 20 years, and the north section of the corridor does not have short-term funding identified. From funding to completion, a typical roadway or highway type of project would include the following major phases:

- Feasibility Study (Pre-engineering Process)
- Engineering Phase I (with Environmental Impact Statement-EIS)
- Engineering Phase II (with plan preparation)
- Land Acquisition
- Utility Relocations
- Environmental Mitigation
- Construction (Bridge, Grading, Paving, and Other) Lighting and Signing
- Each of these phases also includes bidding and contract negotiations. Other transportation improvements, such as transit or aviation, would require a different set of steps for implementation.
As projects become more fully studied, costs refined, and funding identified, they can be amended into the long range transportation plan or added in a subsequent five-year update.

Table 3.8 - Projects Requiring Additional Study

| Project Location | Project Description
 Study | Issue |
| :--- | :--- | :--- | :--- | :--- |
| Roadway | | |
| Classification | | |

The System for 2050

\bigcirc

Table 3.8 (Continued)

Project Location	Project Description	Type of Study	Issue	FFC Glassification
*IL92 Corridor ($10^{\text {th }}$ Street to $48^{\text {th }}$ Street, Moline)- Corridor Study Zones 3 \& 4	Reconstruction with intersection improvements and potential lane reductions for pedestrian, bicycle and transit accommodations	Engineering	Multi-modal Connectiv-ity/Operations	Arterial
78th Avenue/County Hwy. 16 (Rock Island-Milan Parkway - USI50)	Widen; 3 Lanes	Engineering	Capacity/Access/ Freight	Major Collector
Indiana Avenue/205th Street (E. Bettendorf City Limits - W. LeClaire City Limits)	Reconstruction, Pave and Grade	Engineering	Capacity/ Access	Local (Reclassification to Major Collector)
Non-Roadway				
Intermodal container, bulkload port and consolidation facilities	New Construction	Feasibility	Multi-modal or Single Mode Access	Multi-Modal
IL-92 Corridor Light Rail/Bus Rapid Transit	New Passenger Service	Feasibility	Modal Alternative	Rail/Transit
Avenue of Cities Bus Rapid Transit	Enhanced Transit Service	Feasibility	Modal Alternative	Transit
John Deere Road Bus Rapid Transit	Enhanced Transit Service	Feasibility	Modal Alternative	Transit
River to River Bus Rapid Transit	New/Enhanced Transit Service	Feasibility	Modal Alternative	Transit

Source: Bi-State Regional Commission, 2021;

*Technical Correction 2/2022. Reference IL92 Corridor Study Alternatives \& Strategies Summary (February 2020) for details, includes non-motorized transportation elements. Zones 3 and portion of Zone 4 configurations not part of adopted plan travel demand model analysis and would require additional study, and modeling beyond technical corrections. The corridor study summary also identifies cost estimates by zone and not configured for the projects as outlined due to the timing of the study, and original plan adoption timeline. Total cost of completion of Zones 1-6 is estimated at $\$ 30,062,500$.

The following listing describes a general concept for each project requiring additional study as identified in Table 3.8:

- Mississippi River Major Investment Study - Concept is to examine the current Mississippi River crossings from I-280 to I-80 and determine optimum transportation investment for highway and rail traffic. With aging structures, there may be multiple needs that a newly-constructed $\mathrm{I}-74$ crossing alone will not be able to accommodate.
- East Mississippi River Bridge - Concept for a highway bridge across the Mississippi River east of I-74 between Bettendorf, Iowa and East Moline, Illinois. Will require feasibility study.
- Rail Bridges - Concept to replace turn-of-the century rail bridges with new construction to improve system reliability, performance, and meet freight demands. Will require engineering study. Feasibility study completed in 2020.
- East Rock River Bridge - Concept for a bridge across Rock River east of I-74 and west of IL-84/Colona Road to connect IL-5 with U.S. 6. This could be connected to $1-74 / I-280$ via an interchange. Will require feasibility study and an interchange justification study if feasible.
- U.S. $67 /$ Centennial Bridge - Concept to replace or reconstruct historic bridge between Davenport and Rock Island. The bridge was built in 1940 and as an aging structure requires regular inspections and repairs. Will require feasibility study.
- I-80 Reconstruction - lowa Quad Cities - Engineering study for expanding $1-80$ to 6 lanes from the Mississippi River to Walcott, IA. Will require engineering study.
- I-80/U.S. 61 Interchange - Davenport - Concept to reconstruct the interchange to improve current system reliability. Will require feasibility study and an interchange justification study if feasible.
- I-80 New Interchange - LeClaire - Concept to construct a new interchange at the west city limits of LeClaire, west of I-80/U.S. 67 , in the vicinity of $257^{\text {th }}$ Avenue. Will require feasibility study followed by an interchange justification study with local jurisdiction taking the lead.

- I-8o Interchange Reconstruction at I-74 - Davenport - Concept to reconstruct interchange and provide access to the north. Will require a feasibility study and an interchange justification study if feasible.
- I-280 New Interchange in Vicinity of Iowa Interstate Railroad Bridge - Davenport - Concept to construct new interchange that may coincide with realignment of West Kimberly Road with an extension west to l-280. The concept would be to close the current Kimberly Road at the I-280 interchange in lieu of a new interchange south of the current one in the vicinity of the lowa Interstate Rail Road Bridge. Will require a feasibility study and an interchange justification study if feasible.
- I-88 New Interchange at $248^{\text {th }}$ Street - East Moline/Rock Island County - Concept to construct a new interchange to accommodate future industrial development. Will require a feasibility study and an interchange justification study if feasible.
- IL 92 Corridor ($\mathbf{1 0}^{\text {th }}$ Street $-48^{\text {th }}$ Street, Moline) - Concept to reconstruct roadway with lane reductions and intersection improvements to accommodate pedestrian, bicycle and transit. A alternatives analysis was completed in February 2020-IL 92 Corridor Study Alternatives and Strategies Summary. Zones 3 and 4 would need additional study, as the concepts from the plan were not part of the modeled traffic analysis in this long range transportation plan. Will require an engineering study to further the corridor study concepts identified in this segment.
- East-West Circulator Arterial South - Illinois Quad Cities Concept to develop a south beltway or parkway along $120^{\text {th }}$ Ave. through N 1700 Ave. (Turkey Hollow Road to Co. Hwy 12/E. $200^{\text {th }}$ St.). Will require engineering analysis and additional coordination between multiple jurisdictions. A preferred alignment study was completed in 2010.
- $78^{\text {th }}$ Avenue/County Highway 16/Indian Bluff Road (Rock Island-Milan Parkway - U.S. 150) - Concept to provide greater turning movement capacity to industrial-commercial areas on the western portion of the corridor for airport industrial-commercial development, and residential and recreation access on the south side of the road. This segment would be studied for the feasibility of bi-directional lanes to facilitate better traffic flow in the corridor.
- Indiana Avenue/205 ${ }^{\text {th }}$ Street - Scott County - Concept to provide an improved U.S. 67 connection to I-8o/Middle Road from

Holland Street in LeClaire to Middle Road in Bettendorf. The county road segment along $205^{\text {th }}$ Street would require right-ofway, grading, and paving. The reconstruction would provide improved access to the Pleasant Valley Junior High School and an alternate access from LeClaire to I-8o.

- Intermodal container, bulkload port in the region, and consolidation facilities - Concept to construct an intermodal container and bulkload port facility in the Bi-State Region with both rail and river access. Also examine potential single mode, such as truck consolidation facility(ies). Will require feasibility studies. Intermodal container and bulkload port facility is anticipated to be studied in the short term.
- IL-92 Corridor Light Rail/Bus Rapid Transit - Concept to develop either bus rapid transit or passenger service on new light rail along IL-92 in the Illinois Quad Cities. Will require feasibility study
- Avenue of the Cities Bus Rapid Transit - Concept to develop a bus rapid transit system along Avenue of the Cities in the Illinois Quad Cities. Will require feasibility study.
- John Deere Road Bus Rapid Transit - Concept to develop a bus rapid transit system along John Deere Road in the Illinois Quad Cities. Will require feasibility study.
- River to River Bus Rapid Transit - Concept to develop a bus rapid transit system along $19^{\text {th }} / 27^{\text {th }}$ Streets corridor in the Illinois Quad Cities. Will require feasibility study.

It is important to identify projects that will require additional study. Planning dollars will need to be secured to determine if these concepts will meet future transportation needs and their benefits exceed their costs. Through engineering and feasibility analysis, it would be determined whether to move these projects into the long range transportation plan.

The System for 2050

Map 3.3 - Projects Requiring Additional Study

[^0]: Source: Bi-State Regional Commission, 2021

[^1]: Source: Bi-State Regional Commission, 2021

